Establishing a Transport Operation Focussed Uncertainty Model for the Supply Chain

By: Vasco Sanchez Rodrigues
 Damian Stantchev
 Andrew Potter
 Mohamed Naim
 Tony Whiteing
Research Problem Proposition

SC uncertainty frameworks are mainly focused on:

- Manufacturing, logistics is implicit
- Transport a marginal SC activity (Stank & Goldsby, 2000)
- Transport a necessary evil, loose contract, lack of joint thinking, many externalities need to be internalised (Boughton, 2003)
Literature Review

Number of Researchers have developed Uncertainty models with a manufacturing focus, e.g. Uncertainty Circles (Mason-Jones and Towill 1999)
Some authors have extended the Uncertainty Circles Model:

- Van der Vorst and Beulens (2002)- Adding 3 dimensions to the model- quantity, quality and time.
- Geary et al (2003)- Adding to the model examples of causes and effect of uncertainty in the Automotive industry.
- Peck et al (2003)- Adding to the literature the dimension of exogenous events.
The logistics triad

(adapted from Bask, 2001)

Carrier

Shipper

Customer

Physical Flow

Information Flow

Relationships
Conceptual Model Development

- Initially, key words were identified...

Block A: **Uncertainty** as the main key word, but...
Conceptual Model Development

- Initially, key words were identified...

Block A: Uncertainty as the main key word, but...

Confusion about this term in literature, other uncertainty-related key words:

- Risk and flexibility
Conceptual Model Development

- Other key words were identified...

Block B: Transport, logistics, supply chain and manufacturing.
Conceptual Model Development

- Literature sources.

Academic databases, key academic journals, most regarded trade magazines and logistics trade reports
Conceptual Model Development

- Analysis and synthesis...

(a) All the information was captured using 2-way tables in Excel spreadsheets.
Conceptual Model Development

- Analysis and synthesis…

(a) All the information was captured using 2-way tables in Excel spreadsheets.

(b) Individual uncertainties were clustered in two ways...
- Uncertainty source (shipper, customer, carrier, control systems, external uncertainty)
- Uncertainty sub-categories at uncertainty-source level
The logistics triad uncertainty model

(Extension of Mason-Jones & Towill 1998, Bask 2001)
The logistics triad uncertainty model

Control Systems

Carrier

Shipper

Customer

External Uncertainty

(Extension of Mason-Jones & Towill 1998, Bask 2001)
Shipper - Sources of Uncertainty

Purchasing
- JIT Single sourcing
- Problems with supplier capacity

Logistics
- Delays in the shipping process
- Variability between shipment and delivery time
- Lack of warehouse capacity

Commercial
- Lack of integration in Promotions/PCL
- Unnecessary demand volatility
The logistics triad uncertainty model

(Extension of Mason-Jones & Towill 1998, Bask 2001)
Customer- Sources of Uncertainty

DC and store management
- Excessive time-to-market
- Ineffective labelling at DC
- Lack of shelf capacity

Order and Inventory
- Variations in customer demand for transport
- Difficult and non-standard orders
- Isolated inventory reduction programmes

Unloading
- Excessive queuing time
- Unsynchronised transport
- Rigid delivery windows

SC Management
- Insufficient integration within the triad
- Lack of flexibility in the distribution network

Green Logistics
The logistics triad uncertainty model

Control Systems

Carrier

Shipper

Customer

External Uncertainty

(Extension of Mason-Jones & Towill 1998, Bask 2001)
Carrier- Sources of Uncertainty

Fleet and Infrastructure
- Insufficient fleet capacity
- Risk involved in inter-modal rail operations
- Lack of carrier flexibility- e.g. location and vehicle configuration

Scheduling and Routing
- Lack of flexibility in shipment and transport schedule
- Rigid routing plan- excess capacity

Logistic Network Management
- Integration of transport flows in series
- Lack of integration between transport modes and providers

Physical Process
- Double handling in inter-modal terminals
- Delays due to defective vehicles or lack of driver
The logistics triad uncertainty model

(Extension of Mason-Jones & Towill 1998, Bask 2001)
Control Systems - Sources of Uncertainty

Information
- Lack of visibility of information, e.g. inventory and orders
- Demand forecast inaccuracy
- Lack of routing information visibility from carrier

ICT Systems Management
- Information is not updated while the journey happens
- ICT Systems do not allow horizontal collaboration between 3PLs
- Sub-optimisation between transport and inventory

Physical Process
- Poor stock auditing
- Poor quality control systems
The logistics triad uncertainty model

(Extension of Mason-Jones & Towill 1998, Bask 2001)
External Uncertainty Sources

Transport Macroeconomics
- Fuel price variation
- HGV drivers shortages/availability
- Potential future introduction of pollution taxes

Modelling
- Accuracy at the disaggregated level
- Need for detail

Chaotic uncertainty
- Political problems
- Disruptions caused by the weather
- Natural disasters

Congestion
- Unpredictability caused by road accidents
- Unpredictability caused by unexpected road repairs
Discussion and Conclusions

- Our model integrates all the uncertainty frameworks available, focusing primarily on logistics

- 5 sources of uncertainty - shipper, customer, carrier, control systems and external uncertainty

- The model can be used to diagnose supply chain operations within logistics triads
Limitations and Further Research

- The model is purely conceptual, so further empirical and/or analytical research is needed:
 - The model needs to be validated through broader cross-sectional studies- e.g. focus groups or/ and survey
 - The model needs to be verified through the application of case studies
 - However, the model does not take account of the association between root causes and effects of uncertainty, so analytical research is needed to quantitatively verify those causal relationships
Limitations and Further Research

- The model is purely conceptual, so further empirical and/or analytical research is needed:
 - The model needs to be validated through broader cross-sectional studies—e.g. focus groups or/and survey
 - The model needs to be verified through the application of case studies
 - However, the model does not take account of the association between root causes and effects of uncertainty, so analytical research is needed to verify those causal relationships
Thank you for your attention

Any questions?