Carbon Auditing the “Last Mile”: Modelling the Environmental Impacts of Conventional and Online Non-food Shopping

Dr. Julia Edwards
Prof. Alan McKinnon

Logistics Research Centre
Heriot-Watt University, UK
Typical conventional or online shoppers?

We usually shop in the comfort of our own home but the computer crashed.
Stages of production and distribution
(after Green Press Initiative, 2008)

- Loss of Biomass & Wood Harvest
- Paper Production
- Printing
- Publishing
- Distribution & Retailing
- Last Mile
- Consumer
- Return / Disposal of unsold books

% figures indicate relative portion of greenhouse gas emissions

- Landfill (Methane) Release: 8%
- Distribution & Retailing (excluding the last mile): 14%

Borealis Centre for Environment and Trade Research, 2007
8.85lbs (4.02kg) CO₂ per book

Distribution & Retailing
(excluding the last mile)
= < 600gCO₂
Environmental claims by some online retailers

Evening Standard, 20 June 2007

The Guardian, 12 September 2007
Personal travel choices & the impact of Home Delivery

- Shopping trips eliminated
 - Continue to shop for some products
- Remove shopping from multi-purpose trips
 - Browse before buying online
- Shop for other additional / related products
 - Substitute with other car-based travel
- Usually walk / use public transport to shops

Effects on car traffic
Environmental Impact of Online Shopping

• Frequent purchases of small quantities, often from several different web-based companies;

• Additional sortation requirements to combine multiple customers’ orders prior to delivery;

• Internet-browsing encouraging people to go shopping for additional &/or supplementary purchases;

• Little travel savings when conventionally goods were purchased as part of multi-activity trip;

• Treatment of failed deliveries and returns.
Products & Delivery Methods

<table>
<thead>
<tr>
<th>Product type</th>
<th>Typical order size</th>
<th>Main delivery vehicle type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Books</td>
<td>2-3 items</td>
<td>• Parcel delivery van
• Postman (walk / bike)</td>
</tr>
<tr>
<td>Small electrical</td>
<td>c 2 items</td>
<td>• Parcel delivery van
• Postman (walk / bike)</td>
</tr>
<tr>
<td>Large electrical</td>
<td>1 item or set</td>
<td>• Two-man delivery</td>
</tr>
<tr>
<td>Clothing</td>
<td>2 items</td>
<td>• Parcel delivery van
• Postman (walk / bike)
• Home delivery courier (private car)</td>
</tr>
<tr>
<td>Groceries</td>
<td>c 15-20 orders</td>
<td>• Temperature-controlled vans</td>
</tr>
</tbody>
</table>

Source: Iain Beveridge Associates
Devised an Excel spreadsheet to model:

1. CO₂ emissions for home delivery for the last mile (from parcel depot to the consumer’s home); &
2. dedicated shopping trips (single trips) versus multi-purpose trips by consumers (trip chaining).

- Representative delivery scenarios;
- Issue of returns (unwanted goods).
Freight transport to the home

• What type of vehicle is used for the delivery? (diesel / electric van; courier’s private car)

• What type of round? (urban / rural)

• How many drops per round?

• What happens to failed deliveries?

• Does the parcel carrier collect product returns?
Typical conventional shopping behaviour?

- Where do people shop?
- How do they travel to the shops?
- How long is a typical shopping trip (distance)?
- How many items do they buy in that one trip?
- What type of goods are bought?
- Do shoppers combine shopping with other activities?
The Last Mile: Trip assumptions

<table>
<thead>
<tr>
<th>HOME DELIVERY ROUND</th>
<th>DISTANCE</th>
<th>DROPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average van home delivery round</td>
<td>50-miles</td>
<td>120</td>
</tr>
<tr>
<td>City centre van delivery round</td>
<td>25-miles</td>
<td>110</td>
</tr>
<tr>
<td>Rural van delivery round</td>
<td>80-miles</td>
<td>70</td>
</tr>
<tr>
<td>Car-based courier delivery round</td>
<td>25-miles</td>
<td>40</td>
</tr>
</tbody>
</table>

Items per drop:
- 1 (for direct comparison)
- 1.4 (books/CDs/DVDs)
- 2.5 (clothing & household)

Trip chaining: assumes only 25% of trip length is for shopping purposes
Emissions for an average non-food home delivery

Assumptions

Round trip (miles) 50
Drops per round 120
Items per drop 1 / 1.4 / 2.5

CO_2 per drop 181g
CO_2 per item (1.4) 137 g
CO_2 per item (2.5) 72g

* Average values, calculated from 4 sources: Defra; NAEI; FTA; RHA
Emissions for an average conventional shopping trip

<table>
<thead>
<tr>
<th>Mode</th>
<th>Journey trip</th>
<th>Round trip – miles</th>
<th>CO₂ per trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>Local</td>
<td>2- miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>12.8-miles</td>
<td>4,274g CO₂</td>
</tr>
<tr>
<td></td>
<td>Distant</td>
<td>40-miles</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Local (urban)</td>
<td>2-miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>8.8-miles</td>
<td>1,265g CO₂</td>
</tr>
<tr>
<td></td>
<td>Inter-urban</td>
<td>40-miles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>20-miles</td>
<td></td>
</tr>
</tbody>
</table>
Carbon intensity of non-food home deliveries ‘v’ shopping on the High Street

\[\text{CO}_2 = 181 \text{g per drop} \]

Dedicated shopping trip by CAR

\[\text{24 items or more} \]

Dedicated shopping trip by BUS

\[\text{7 items or more} \]

- Low emissions car (< 100gCO₂ per km) = 12 items or more
- High emissions car (> 350gCO₂ per km) = 40 items or more

Source: based on National Travel Survey 2007 data, Defra average bus patronage, Vehicle Certification Agency
CO$_2$ per drop for different home delivery rounds

<table>
<thead>
<tr>
<th></th>
<th>gCO$_2$ per parcel delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average:</td>
<td>181</td>
</tr>
<tr>
<td>delivery van</td>
<td></td>
</tr>
<tr>
<td>City centre:</td>
<td>98</td>
</tr>
<tr>
<td>delivery van</td>
<td></td>
</tr>
<tr>
<td>City centre:</td>
<td>28</td>
</tr>
<tr>
<td>electric</td>
<td></td>
</tr>
<tr>
<td>vehicle</td>
<td></td>
</tr>
<tr>
<td>Rural:</td>
<td>492</td>
</tr>
<tr>
<td>delivery van</td>
<td></td>
</tr>
<tr>
<td>City centre:</td>
<td>417</td>
</tr>
<tr>
<td>courier:</td>
<td></td>
</tr>
<tr>
<td>(car)</td>
<td></td>
</tr>
<tr>
<td>City centre:</td>
<td>340</td>
</tr>
<tr>
<td>Courier (car</td>
<td>plus</td>
</tr>
<tr>
<td>delivery van)</td>
<td></td>
</tr>
</tbody>
</table>

HERIOT WATT UNIVERSITY
Failed delivery: Emissions (gCO₂) per item

<table>
<thead>
<tr>
<th></th>
<th>100% successful first-time delivery</th>
<th>12.5% failure rate</th>
<th>25% failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average delivery</td>
<td>181g</td>
<td>204g</td>
<td>226g</td>
</tr>
<tr>
<td>Urban delivery</td>
<td>98g</td>
<td>110g</td>
<td>123g</td>
</tr>
<tr>
<td>Rural delivery</td>
<td>495g</td>
<td>557g</td>
<td>619g</td>
</tr>
</tbody>
</table>
Implications of shopping trip type on CO₂ emissions (g)

Combined: (bus-based shopping 25%) Combined: (car-based shopping 25%)

Dedicated, average trip by bus Dedicated, average trip by car

Browsing: 2 bus trips per purchase Browsing: 2 car trips per purchase

316 1069 1265 1581 2530 4274 5343 8548
Summary: Home Delivery

• The Local Level dominates any environmental comparison of online & conventional shopping;

• Emissions from car-based shopping trips can far exceed those from distribution operations back along the supply chain;

• Numerous factors influence emissions from home deliveries: drop densities; distance & nature of delivery round; type of vehicle, failed deliveries & returns.
Summary: Conventional shopping

- It is always better to maximise the no. of items purchased at any one time;

- When using public transport at busy times & making several purchases, emissions per item are lower than home delivery;

- Consequently, use of public transport needs to be promoted wherever practical, especially for shorter trips.

Neither retail channel has absolute environmental advantage, though, in the case of non-food purchases, the home delivery operation is likely to generate less CO₂.
Contact details

Logistics Research Centre
Heriot-Watt University
EDINBURGH, UK

J.B.Edwards@hw.ac.uk

http://www.sml.hw.ac.uk/logistics

www.greenlogistics.org.uk