

A Short History of Green Logistics Research in the UK

Professor Alan McKinnon

Logistics Research Centre

Heriot-Watt University

Scope

 Most logistics research focuses on ways of saving money / increasing profitability

Many efficiency improvements also yield environmental benefits

 Review confined to research which is explicitly concerned with the environmental impact of logistical activity

Research Sponsors and Participants

Research Sponsors and Participants

Research Themes

- Reducing the environmental impact of freight transport
- Managing the return flow of waste reverse logistics
- Minimising the effects of warehousing on surrounding areas

Origins of physical distribution / logistics as an academic discipline

Emergence of environmental campaigning against heavy lorry traffic and road construction

concern mainly about localised impact of freight traffic

Cooling trend since 1945 causing concern about return of the Ice Age

Intrusion of the heavy lorry......

Punch 1973

'Smash the next lamp on the left, flatten the pavement by the pub, nudge the sweet shop, scrape the Market Cross, then just follow the skid marks to London'

Green Logistics Project Launch Birmingham 2006

Growth of Anti-Lorry Sentiment

Reasons:

- Sharp increase in lorry traffic
- Erosion of freight traffic from rail
- Increased use of large trucks in retail delivery role
- Campaigning by environmental organisations: Civic Trust 'Heavy Lorries' (1970)

Initiatives

Dykes Act (1973) on Lorry Routing Lorries and the Environment Committee (1974-79)

Pettit Inquiry (1973)

'Lorries and the World We Live In'

Armitage Inquiry 1980

Transport and Road Research Laboratory: Freight Studies

- Quiet heavy vehicle
- Urban freight studies
- Empty running by lorries
- Lorry routing schemes
- Public perception of lorries

Many Small versus Few Big Dilemma

Some environmental costs correlate strongly with vehicle numbers:

e.g. air pollution, noise and accident risk

Others correlate mainly with vehicle size and weight:

e.g. vibration, accident severity, visual intrusion

1 x 16 tonne load

2 x 8 tonne loads

4 x 4 tonne loads

Testing Public Perceptions of Vehicle Size

330 people interviewed in two towns

Inconclusive result:

'no clear preferences can be established'

4 small and 1 large vehicle combinations were equally disliked.

2 medium sized vehicles were the least disliked

Urban Freight Studies

1970s: 'heyday of the urban freight study'

Differing emphasis:

North America: load consolidation – 'small order problem'

Europe: load disaggregation – 'ban large vehicles from towns'

Urban transhipment

feasibility studies

Location	Date	Consultant / Researcher					
Hammersmith	1974	Metra Ltd.					
Camberley	1975	CIDP Ltd.					
Chichester	1975	Lichfield and Assocs					
Bradford	1975	WYTCONSULT					
Swindon	1976	Transport and Road Research Lab. (TRRL)					
Hull	1976	Lorries and the Environment Committee					
Barnsley	1976	Urquhart (PhD thesis)					

1980s

- Greater London Council:
 - freight on freight consolidation and freight complexes
 - Wood Inquiry into the night lorry ban

Impact of warehousing development (Dept of the Environment)

Development of intermodal transport ('combined transport')

Industry Initiative: Greening of the ILDM 1993

The Institute of Logistics and Distribution Management

Analysing the environmental impact of logistics

Establishing environmental best practice

Promoting adoption of green practices

Heading-off tougher government regulation

78% of logistics managers considered the EU to be the main source of pressure to green logistics operations

Importance of Environmental Issues to Logistics Managers

Source: PE Consulting / Institute of Logistics

Local Environmental Impact of a Distribution Centre

The Landscaped Warehouse

Source: Logistics Manager 1/2005

Just-in-Time Delivery: the environmental impact

SSRC Transport and the Environment Programme 1992-4

- Funded research at Heriot-Watt and Cranfield on the relationship between logistics trends, freight traffic growth and environmental impact
- Developed new frameworks for the analysis of this relationship and conducted extensive surveys of logistics managers in different industrial sectors
- Formed the basis for later EU 4th and 5th Framework research projects on links between logistics and freight traffic growth at a European level: REDEFINE and SULOGTRA

SUpply chain LOGistics TRAnsport

EU Research Frameworks

Support for research on many aspects of Green Logistics

Effect of Transport Cost Increases on the Optimum Number of Distribution Centres

	Level of Road Transport Costs												
V a lu e													
Density	Typical	Present		+50%		+100%		+150%		+200%			
£/tonne	Product	Level											
		\mathbf{W}	D	\mathbf{W}	D	\mathbf{W}	D	\mathbf{W}	D	\mathbf{W}	D		
50	Cement	3	3	3	3	3	3	7	10	7	10		
$\boldsymbol{100}$	Compound	3	3	3	3	3	3	7	10	7	10		
	Fertiliser		\sim										
500	Paper	3	3	3	3	3	3	6	3	7	10		
$\boldsymbol{1000}$	Cakes	3	3	3	3	3	3	3	3	7	7		
5000	Stainless	2	2	2	2	2	2	3	3	3	3		
	Steel Sinks												
10000	Clothing	1	1	2	2	2	2	2	2	2	2		
20000	Personal	1	1	1	1	1	1	1	2	2	2		
	Computers												
	_				Opti	mum	numb	er of					
W = Weekly Delivery				distribution centres to									
D = Daily Delivery		-			supply the UK								

The Food Miles Issue

SAFE Alliance: 'Food Miles Report' (1994)

Transportation Relationships STRAWBERRY YOGHURT Showing the main transportation of materials for the manufacture of 150g pot of strawberry yoghurt

Transport Intensity and environmental impact of the yoghurt supply chain

For every pot of yoghurt sold in a German supermarket a truck travels 9 metres

S. Boge, Wupperthal Institute 1993

'Food Miles' Issue

Effect of Globalisation on the Christmas Dinner

Guardian 11 Dec 2001

The Validity of Food Miles as an Indicator of Sustainable Development

Social Costs of Food Transport

Source: AEA Technology et al 2005

Royal Commission on Environmental Pollution 1994

'We recommend that all urban authorities adopt a presumption against access for HGVs over 17 tonnes'

'The target we propose for rail is to increase the proportion of tonne-kms carried by rail from 6.5% to 10% by 2000 and 20% by 2010'

'We believe a sustainable transport policy would be based on growth of no more than 10% a decade in overall demand for freight transport over the next 30 years.'

Challenging Freight Transport Planning Orthodoxy

Fallacy of 'predict and provide'

'Freight absurdities - the movement of goods over large distances for no apparent reason...need to curb the rise in pointless freight transport'

Weak versus Strong Sustainability

Weak sustainable development:

- environmental objectives are traded-off against economic and social objectives

Strong sustainable development:

- environmental considerations impose an absolute constraint on the achievement of economic and social objectives

Source: Whitelegg, 1995

Close Correlation between Economic Growth and the Growth of Road Freight Transport

Decoupling of road tonne-km GDP trends

Factors Contributing to the Decoupling

Freight Modal Split 1985-2004

Average External Costs of Different Transport Modes in EU

Variations in CO₂ Emissions per Tonne-km by Mode

Research on Freight Modal Split

- Bayliss and Edwards 'Industrial Demand for Transport' (1969)
- Numerous research papers and theses on freight modal split issue
- Innovative methodologies developed: stated preference models
 Leeds Adaptive Stated Preference (LASP) model
- Development of new multi-modal freight forecasting tools

'Marine Motorways'

New Initiatives on Packaging Waste

Green Logistics Project Launch Birmingham 2006

Reverse Logistics

- packaging waste directives in Europe
- growth of interest in returnable packaging
- Jim Stock's CLM White Paper on 'Reverse Logistics'
- US academics associate Green Logistics with Reverse Logistics

'The movement of materials from the earth through production, distribution and consumption back to the earth.'

Jonathan Weeks (1996 chairman of the Institute of Logistics)

- impact of the recycling of packaging waste on freight transport system
- rationalising the movement of domestic waste in urban areas

Modelling the Reverse Supply Chain

Source: based on Thierry et. al. Integrated supply chain (1995)

Research on Sustainable Distribution

- Identified new research areas
- Promise of a new journal of sustainable distribution research
- Future Integrated Transport research programme:
 - 5 freight projects out of 44
- Formation of the Freight and Logistics
 Research Group
- Funding of research to support
 TransportEnergy Best Practice Programme

Industry - Government - University Collaboration

- Best practice initiatives
- Support for industry-led benchmarking schemes
- Advisory programmes

Transport KPI programme

Key Performance Indicators surveys:

Food supply chain Pallet load networks

Automotive supply chain Parcel delivery network

Non-food retail distribution Construction supply chain

- 'synchronised audits' over 48 hour periods
- benchmarking of vehicle utilisation and energy efficiency

Greening of Road Freight Transport

Euro 4

Euro 3

Projected Emissions from Road Freight Operations in the UK

Euro 2 g/kWh

Euro 5

Vehicle Telematics and Routing Systems

- Cutting vehicle kilometres
- Minimising exposure to traffic congestion
- Cutting fuel consumption and CO2 emissions
- Permitting more environmentally-sensitive charging systems

Press and Public Continue to Dislike Lorries

Climate Change: the New Priority

32.4 m tonnes of CO2 from freight transport 20% of all transport CO2 emissions 5% of total UK CO2 emissions

Source: Lefevere

Retail Consolidation Systems

Consolidation Scheme

CiVITAS Wood Dela

University of Westminster review of urban freight consolidation for DfT

Development of the Life Cycle Approach

Logistics Contribution to Total Externalities

Need to minimise 'embedded carbon' in products

Use of Supply Chain Mapping Tools to Measure CO₂ Emissions

University of Cardiff, 2004

Applying Lean Supply Chain Principles on CO₂ Emissions

Analysis of a food supply chain in the UK

Concluded that leaner supply chains also had lower CO₂ emissions

	Current State				Future State			
	Time	%	CO2	%	Time	%	CO2	%
VA	22.2h	5/.3	142g	28	22.2h	7.0	142g	28
NNVA	6.5h	/1.6	26.5g	5	6.5h	2.0	27.9g	5.5
NVA	387h	93.1	395g	79	289h	91	368g	74
Total	416h	100	564g	112	318h	100	538g	108

Value Add Time Total Time

Source: Mason et al, Cardiff University, 2002 Supply Chain CO2 Unit Weight

ITeLs Project

Impact of Inventory Centralisation on CO₂ Emissions

Case study: ITT Flygt

	Decentralised system	Centralised system		
Average length of haul	1512 km	2153 km		
Total tonne-kms (ann.)	2.2 million	2.9 million		
CO ₂ emissions (ann.)	92.2 tonnes	131.1 tonnes		

Kohn 2005

Conclusions

- Research objectives evolved from curbing the HGV to wider analysis of supply chain impacts
- Emphasis shifted from localised environmental impacts to global warming
- Close involvement of government, industry and trade bodies
- Priority given to green-gold measures weak form of sustainability
- Externalities per tonne-km in the UK have been declining
- Globally tonne-kms are increasing exporting the pollution problem
- Sharp increase in corporate awareness of environmental issues
- Plenty work still to be done.....

Contact details

Logistics Research Centre Heriot-Watt University EDINBURGH UK

A.C.McKinnon@hw.ac.uk

http://www.sml.hw.ac.uk/logistics